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Abstract
I study the time evolution of a particle prepared in the ground state of an infinite
well after the latter is suddenly expanded. It turns out that the probability density
|�(x, t)|2 shows up quite a surprising behaviour: for definite times, plateaux
appear for which |�(x, t)|2 is constant on finite intervals for x. Elements of
theoretical explanation are given by analysing the singular component of the
second derivative ∂xx�(x, t). Analytical closed expressions are obtained for
some specific times, which easily allow us to show that, at these times, the
density organizes itself into regular patterns provided the size of the box is
large enough; more, above some critical size depending on the specific time,
the density patterns are independent of the expansion parameter. It is seen how
the density at these times simply results from a construction game with definite
rules acting on the pieces of the initial density.

PACS numbers: 03.65.−w, 03.65.Ge, 85.35.Be

(Some figures in this article are in colour only in the electronic version)

1. Introduction

This paper is devoted to some strange dynamical aspects around a problem which is often
presented as the simplest one in quantum mechanics, namely the infinite one-dimensional
well, although such a point of view can be seriously questioned (for instance, what about the
Heisenberg equations of motion for the infinite well?). Indeed, when going beyond academic
elementary questions, this problem is not simple, and even turns out to be somewhat tricky,
all subtleties obviously originating from the infinite discontinuities of the potential, which
generates an infinity of bound states with an energy En increasing without limit like the square
of the quantum number n. This immediately means that the propagator involves Gauss series
(the Jacobi ϑ3-function being one very special case [1]), which are known to possess quite
uncommon features; as an example, Holschneider [2] shows that when the coefficients cn of
the series are ∝n−2, the sum is a self-similar function in a precisely defined sense. Here, I
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only aim to give a brief account of intriguing results, together with a far-from-being-complete
theoretical explanation and proof.

As all soluble simple models, the infinite well has been (and still is) the subject of
numerous papers, aiming at pointing out specific features of quantum behaviour and also to
closely analyse the classical limit (see, e.g., [3]) in a framework where detailed calculations
can be performed in details without approximations. With this in mind, one basic question
is the quantum-revival problem [4–6] (for a recent review, see [7]), which can be viewed as
a quantum version of the Poincaré recurrence theorem and amounts to settle the role of the
quasi-periodic functions appearing in the mathematical description of the problem at hand.
This can be done under definite assumptions, namely that the expansion of the wavefunction
on the eigensolutions has a resonant behaviour near an integer n0 � 1 and a width �n � n0;
then by making a Taylor expansion of each phase factor e−iEnt/h̄ around n0, it is possible to
define the so-called classical period and a revival time [4]; the central point is that such an
expansion generates a Gauss series for the (approximate) propagator, which is at the heart of the
problem. The classical period thus defined is nothing else but the starting point of Heisenberg
in constructing his Matrix mechanics. Clearly, these natural time scales are relevant only when
such strong assumptions are done.

These points are not at all the subject of the present paper. The analysis done below
does not rely on any large quantum numbers assumption; in addition, as shortly stated below,
the dynamics of the problem here studied is so trivially periodic, for any initial state, that it
deserves no discussion at all. On the other hand, it appears that some connections can be
established with the fractional revival problem [8, 9], due to the fact that, at some definite
times, the probability density turns out to be made up with transformed pieces of the initial
(periodic) wave packet (see section 4, especially figure 7). The basic reason is that the
propagator is here exactly given by a Gauss series.

The problem analysed below can also be viewed as the opposite one discussed by
Bender et al [10], where a barrier is suddenly inserted within an infinite well. These
authors show that the resulting dynamics strongly depends whether the barrier is located
at a static node of the wavefunction or not, and explain how this situation mimics an EPR
experiment based on energy conservation rather than angular-momentum conservation. They
also demonstrate the fractal nature of the subsequent wavefunction, a property which basically
results from the exact n2 dependence of the energy spectrum and can be related to the work by
Holschneider [2].

Fractal properties of the dynamics in an infinite well were recognized and analysed some
time ago by Berry [11]; since that time, many papers have been devoted to the study of
quantum carpets, fractional revivals and their formal relations with the classical Talbot effect
[12–15], fractional or not.

To be sure and strictly speaking, infinite discontinuities can be discarded on physical
grounds, but they conveniently modelize a situation where the depth V0 of the well is much
greater than all other relevant energies, and where the space variation of the potential occurs
on a length scale l much smaller than all the others. Be it said in passing, for this reason, the
classical limit of the infinite well is not a trivial point, due to the fact that one should first
properly consider on the same level the two limits l → 0 and V0 → +∞, in order to check
whether they commute or not and, if they do not, to choose the physically relevant limiting
procedure for the considered case (for another example, see [16], section 1.6). On a technical
level, the main qualitative change with regards to a finite well is the transformation of infinite
series into finite discrete sums, completed with an integral over unbound states. This can be
understood by locating the singularities of the Green’s function in the complex plane and is
readily accounted for by the use of the residue theorem (for an example, see [17]). When the
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number of bound states is large, the additional terms arising from the move of singularities
are small; this fact technically explains the relevance of an idealized infinite well to describe
real-life systems, as well in atomic as in condensed-matter physics.

Let me now precisely state the problem at hand, which corresponds to the following
physically meaningful situation. Given that the particle (mass m) is initially in its ground
state, the well is instantaneously (say, at t = 0) expanded to a larger size (a → λa, with
λ > 1): what is the subsequent evolution of such a prepared initial state in the enlarged
well? Some aspects of the dynamics in an infinite well with a moving boundary have already
been studied [22–25]; here I focus on results which are absent from these works and, up to
my knowledge, seem unquoted in the literature. Obviously, any possible connection with an
experiment would first of all require a proper analysis of various time scales, in order to be
sure that the following theoretical framework is relevant to the experimental device. A short
discussion on this point is given in section 6.

Let us now enter into the specific problem and precise the notations used throughout.
Taking, for the non-expanded well, V (x) = 0 if 0 < x < a and V (x) = ∞ elsewhere, the
normalized eigenfunctions are

ψn(x) =
√

2

a
sin

nπx

a
(0 � x � a), (1.1)

and vanish outside this interval; the eigenenergies are

En = n2π2h̄2

2ma2
≡ n2h̄ω1 ≡ n2 h

T1
, (1.2)

where n is a strictly positive integer, whereas T1 is trivially the smallest time period of any
time-dependent state built as a linear combination of ψn’s.

Since the initial state �(x, 0) ≡ ψ1(x) is not a stationary state of the dilated well,
�(x, t) has a non-trivial time dependence and, among other things, expectation values of
the observables which do not commute with the Hamiltonian at t > 0 show up actual time
dependence. I will focus on two of them, namely the probability density ρ(x, t) and the
density probability current j (x, t) defined as usual:

ρ(x, t) = |�(x, t)|2, j (x, t) = h̄

m
Im[�∗(x, t)∂x�(x, t)], (1.3)

where Im denotes the imaginary part. ρ and j are related by the local conservation equation
∂tρ + ∂xj = 0; considering only the density, as is most often done, provides an incomplete
view of the dynamics, due to the interplay of these two basic quantities. A simple glance at the
figures showing the variation of the current (see, e.g., figures 4 and 8) convinces that the latter
deserves some attention. In addition, a few results concerning the averages of the position and
the momentum of the particle will be briefly quoted at the end of the paper.

On the other hand, the expectation value of the energy does not change since no work
is done on the particle when the well is expanded—which clearly shows why the present
problem is the opposite of that discussed by Bender et al [10]; this obvious physical fact will
be analytically checked in due time. As for the variance of the energy, it vanishes before
the expansion, but turns out to be infinite once the latter has been performed (see section 5),
simply because the energy probability distribution is a power law of the Pareto type with a
rather small exponent.
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2. Wavefunction at t > 0

The eigensolutions of the expanded well are simply obtained by making a → λa in
formulae (1.1) and (1.2), namely:

ψλ,n(x) = 1√
λ

ψn

(x

λ

)
, 0 � x � λa; Eλ,n = 1

λ2
En. (2.1)

Note that if λ2 is an irrational number, the two spectra En and Eλ,n have no coincidence at all.
The dilatation of the well lowers each eigenenergy and yields an increased energy density (in
infinite space, the spectrum is continuous).

The resulting state at time t > 0, �(x, t), can be developed on the complete eigenstates
{ψλ,n}n and has an expansion of the form

�(x, t) =
+∞∑
n=1

cn e
1
ih̄ Eλ,ntψλ,n(x). (2.2)

Note that, as discussed at length by Styer [3] in connection with the classical limit, it
immediately results that the motion is periodic, with the period T = λ2T1, since the expansion
of �(x, t) only contains integer multiples of the circular frequency ωλ = λ−2ω1 (the square
of an integer is an integer); as obvious on physical grounds, enlarging the well increases the
period of the motion: for an infinite expansion, the motion is not periodic since, among other
things, the wave packet would spread out ad infinitum. Also note that the wavefunction at
time t is given by a Gauss series, i.e. a trigonometric series with time-oscillating factors of
the form ein2ωt , as contrasted to einωt in a Fourier series. This yields quite rapid and irregular
variations in time, all the more when the series coefficients decrease slowly with n, which is
the case here (see equation (2.3)).

The coefficients cn are readily found by writing the initial condition �(x, 0) = ψ1(x) and
are equal to the scalar products 〈ψλ,n|ψ1〉; a straightforward integration yields

cn = 2λ3/2

π

sin nπ
λ

λ2 − n2
, (2.3)

so that the wavefunction at time t � 0 can be eventually written as

�(x, t) = iλ

π

√
2

a

+∞∑
n=−∞

sin nπ
λ

n2 − λ2
ei nπx

λa e−in2ωλt , (2.4)

an expression valid for 0 � x � λa, it being understood that �(x, t) vanishes outside the
enlarged well. The expression (2.3) illustrates an obvious physical fact: for λ � 1, a huge
number of excited states are relevant, although the inequality �n � n0 is not satisfied since
then �n ∼ λ ∼ n0. For this reason, the problem here analysed cannot be so simply related to
the classical limit studied elsewhere [4–6].

For any given time t, �(x, t) is a continuous function of x and of t; this is recognized
from the fact that the coefficients cn behave like n−2 for large n, ensuring that the series
in (2.4) is uniformly convergent. Obviously, this is not true for the x- or t-derivatives of
�(x, t) (remember that the potential has infinite discontinuities).

By construction, each exponential function en(x, t) ≡ ei( nπx
λa

−n2ωλt) satisfies the
Schrödinger equation ih̄∂t en = − h̄2

2m
∂xxen, so that e∗

n∂xxen − en∂xxe
∗
n = 0: as it is the case

for any stationary state in one dimension, the corresponding probability current is constant in
space, ∂xjst(x) = 0 (for bound states, one even has jst(x) = 0). This entails that performing
a term-by-term derivation of the expansion (2.4) to get the formal expression of the current
j (x, t) related to �(x, t) can only generate singular terms, arising from the difference between
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the derivative of a function, and the series of the derivatives; these singularities turn out to be
Dirac functions, which means that, for a given time, j (x, t) is a piecewice constant function
of x, whatever the initial state may be. Several examples of this will be given in due time.

Note that making t = 0 on the RHS of (2.4) leads to the function equal to
√

2/a sin(πx/a)

for 0 � x � a, and equal to zero for a � x � λa, since �(x, 0) = ψ1(x): in view of the
following and considering the whole interval [0, λa], this allows us to say (trivially at this point)
that the initial probability density shows up a plateau with a vanishing value for a � x � λa.
From this, one concludes that the following equality holds true for any x ∈ [0, λa]:

iλ

π

+∞∑
n=−∞

sin nπ
λ

n2 − λ2
ei nπx

λa = θ(a − x) sin
πx

a
, (2.5)

where θ(x) is the unit-step function (θ(x < 0) = 0 and θ(x > 0) = 1), as well as all the
other equalities obtained by a term-by-term derivation; all of them can be 2λa-periodized in x
if needed. The important point to realize is that the series on the LHS of (2.5) is identically
zero for any x such that a � x � λa (it turns out unnecessary to define the step function for
x = 0, since all the corresponding terms are multiplied by functions vanishing at this point).
Note that if λ → 1 (no change of the well), all coefficients go to zero, except for c1 which
equals 1, as it must be. More generally, if λ is a positive integer n0, the indetermination for
cn0 is left by setting λ = n0 + ε and by taking the limit ε → 0; one thus obtains cn0 = 1√

n0
.

As we will see, one remarkable thing is that the probability density at time t also shows
up plateaux (but not always with a vanishing value), in other finite intervals [xk, xk+1] at
given periodic times; this can be figured out as the recurrent ghosts of the initial flatness on
[a, λa]. Berry [11] considered the case of a static well with a flat initial state and found that,
in such an extreme case and at some definite times, the density is an indeed piecewise constant
(discontinuous) function of x.

Also note from (2.4) that �(x, T − t) = �∗(x, t), so that ρ(x, t) = ρ(x, T − t): at
times t and T − t the two density distributions coincide, but since the two wavefunctions are
complex conjugate, the two corresponding wave packets have opposite group velocities; for
the same reason the current satisfies j (x, T − t) = −j (x, t). Other symmetry properties
can be found by inspection of the series (2.4); for example, one easily sees that for
t = T/4, �(x, T /4) = −�∗(λa − x, T /4), namely that at a quarter of the period (or at
three-quarter), the density profile is even with regards to the middle of the dilated well. Other
relations exist when both the abscissa and the time are changed, for instance one has

�(x, t + T/2) = −�(λa − x, t) (2.6)

for any x and t. As we shall see, such symmetries play an important role, in particular to get
closed convenient expressions for density and current at some remarkable times.

Since the initial state ψ1(x) is normalized to unity, so is �(x, t) at any time; this can be
checked by a direct summation of the series

∑+∞
n=1 |cn|2 (see appendix A).

3. Probability density plateaux and hints for a theoretical explanation

The surprise comes when plotting the probability density ρ(x, t) at different times. Some
examples are given in figures 1–3, which show that for very special times the probability
density assumes constant values in some definite intervals included in [0, λa]. As already
said, these plateaux can be figured out as the echoes of the flatness of �(x, 0) with a zero
height in the range [a, λa] for x.

The theoretical explanation of the existence of the plateaux lies on arguments which
could be more firmly grounded if mathematical rigor were required. The basic idea is to
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Figure 1. Probability density |�(x, t)|2 when the particle starts from the ground state of the
undilated well; here, λ = 1.5. Each curve is labelled by the time t, with T being the period of the
motion (see the text).
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Figure 2. Same as figure 1 for λ = 2.5.
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Figure 3. Same as figure 1 with λ = 5.5.
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use the second derivative ∂xx�(x, t) as an indicator, since its singularities determine the
abscissae where �(x, t) can have a cusp. Indeed, let us assume for definiteness that x0 is an
abscissa to the left of which ρ(x, t) is increasing and is constant on the right. This means
that the first derivative ∂x� has a negative jump at x0, entailing that the second derivative
contains an additive singular term ∝δ(x − x0) with a negative weight, with δ(x) being the
Dirac function (remember that if a function f (x) has a jump �f at x = x0, its derivative
is f ′(x) + �f δ(x − x0) ≡ f ′(x) + Dsingf , where f ′ is the ordinary derivative). At such a
singular point, the derivative ∂x� has a jump, so that, generally speaking, the density |�|2
shows up a cusp. Due to the general properties of the Schrödinger equation, singularities are
indeed to be expected in the second derivative in the presence of infinite discontinuities of the
potential; they merely reflect, on a quantum-mechanical level, the jumps of the velocity of a
classical particle bouncing off the walls. These singularities, located at x = 0 and x = a at
t = 0, actually move about in the interval [0, λa] as time increases.

The second derivative of �(x, t) is obtained by a term-by-term derivation of the
expansion (2.4); by writing n2

n2−λ2 = 1 + λ2

n2−λ2 , it can be recast in the form

∂2�

∂x2
= −π2

a2
�(x, t) + D2

sing�, (3.1)

where

D2
sing� = − iπ

λa2

√
2

a

+∞∑
n=−∞

sin
nπ

λ
ein πx

λa e−in2ωλt (3.2)

is the only singular part of ∂2

∂x2 �. The factor in the first term on the RHS of (3.1) is recognized as
− 2m

h̄2 E1 and comes from the (ordinary) Laplacian operator in the (time-dependent) Schrödinger
equation. Now, keeping in mind the well-known Fourier expansion of the Dirac comb∑

n∈Z
e2iπnx = ∑

k∈Z
δ(x − k), it is realized that D2

sing� embodies Dirac functions whenever
the series in (3.2) contains an infinite countable set of terms of the kind ei×integer×2π , each
having a coefficient which is independent of the dummy summation label. In order to explore
this possibility, I rewrite the expression (3.2) as follows:

D2
sing� = π√

2λa5/2

+∞∑
n=−∞

[
ei nπ

λa
(x−a) − ei nπ

λa
(x+a)

]
e−in2ωλt . (3.3)

First of all, note that for x = a, the first series in (3.3) reduces to
∑

n∈Z
e−in2ωλt , i.e. generates

a Dirac comb whenever e−in2ωλt = 1 for an infinite countable set of values for n; this is the
case if t = (p/q)T with p and q integers: for all values of n of the form kq (k integer),
one has n2ωλt = k2qp × 2π , which of the desired form: integer × 2π . At this stage, and
considering only the first series in (3.3), it is seen that a cusp can occur for �(x, t), with
(∂x�)a+ − (∂x�)a− > 0 since the weight of δ(x − a) is then clearly a positive quantity. Note
that the same argument also holds for all the points of the form x−a

λa
= even integer but all the

corresponding abscissae are outside the relevant interval [0, λa] and may be ignored.
This tells us that x = a is a good candidate, but this is just the beginning of the story,

due to the existence of the second series in (3.3). To show what can happen, let us set x = a

in both exponentials; the whole series then writes
∑

n∈Z
(1 − e2inπ/λ) e−in2ωλt . In fact, it can

happen that for all countably set of ‘good’ values of the integer n the two exponentials cancel
each other, annihilating the possibility for the point x = a to be a cusp. For definiteness, and
as an example, let us go back to figure 1 and consider the curve t = T/2 where the density
clearly shows up a ‘normal’ maximum at x = a. For this case, one has p = 1 and q = 2 in the
above notations, which entails that the good values for n are n = 2s (s integer); then, the only
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non-vanishing factors (1 − e2inπ/λ) are for s = 1, 2(3), but for s = 1(3) and s = 2(3) they
have opposite signs, so that the two related Dirac combs indeed have opposite weights, and
the singularity at x = a disappears. Thus, the point x = a is not always such a remarkable
point.

Let us now show that other values of the couple (x, t) can define the edges of the plateaux,
without trying to give an exhaustive catalogue of all these possibilities, just aiming at giving
a few sufficient conditions for that.

The second exponential term einπ(x+a)/(λa) in (3.3) is equal to 1 for any n if (x +a)/(λa) =
r/s, r and s integers, and if n is an even multiple of s; the constraint 0 � x � λa entails
1 � r/s � 1 + 1/λ. This being realized, the conditions for the time-varying factor e−in2ωλt are
the same as above, namely t must be a rational fraction of the period T: t = (p/q)T .

One example of such a case can be seen in figure 1, where λ = 3/2. For t = T/4 (ωλt =
2π/4), p = 1, q = 4 in the above notations. Close inspection reveals that x = a is indeed a
cusp, as well as x = a/2 (take r = s = 1); there is numerical evidence, and this is analytically
proved below, that these points are in fact the edges of a plateau. Note that the signs of the Dirac
combs can be reversed; for instance with (x+a)/(λa) = r/s, if r is odd and n an odd multiple of
s, ei(2k+1)sπ(r/s) = ei(2k+1)rπ = −1 (as examples, see the curves t = T/5 and T/10 in figure 1,
for which the density increases on the left and to the right of the plateau).

Obviously, the existence of cusps is just a necessary condition for the occurrence of the
plateaux. In order to analytically demonstrate their existence, one must generally prove that
between two so identified given cusps the density is indeed constant. This seems to be a rather
intricate and difficult mathematical problem; in this short preliminary paper, I just intend to
demonstrate this in a few specific cases, hoping to give a complete general proof in a future
article.

Before going further, a comment turns out to be useful. The basic ingredients of the present
analysis are first the Dirac comb, second the apparition of the constant-density plateaux. With
all this together, it is tempting to establish a relation with recent findings in the research of
attosecond spectroscopy (for an introduction, see [18]), especially with the constant intensity
distribution for a large number of harmonics, usually called frequency comb because of its
similarities with a true Dirac comb. Such an analogy should not be pushed too far. A first
observation is that the generation of harmonics in a nonlinear medium can be explained in a
semi-classical theory [19], even if a purely quantum-mechanical theory is available [20]; in
contrast, as is hopefully clear, the density plateaux here result from a subtle interplay between
essentially complex amplitudes, the phases of which play a crucial role for the onset of the
former. Another difference is that the words characteristic plateau in attosecond spectroscopy
merely express the fact that the intensity In of the nth harmonic is nearly constant for n
going from a small integer number to a few hundreds; this is frankly different from the
strictly constant values in definite intervals for x found above for the continuous density of
probability ρ(x, t). Also note that, as explained above, the Dirac comb is just a technical tool
for hunting singularities (divergences), which anyway are connected to the second derivative
of the wavefunction, not to the squared modulus of the latter.

As for the frequency comb on the femtosecond scale now used for metrology of optical
frequencies [21], no connection of any kind can be established since it this case there are no
plateaux at all.

4. Closed expressions for specific times

It turns out that for some definite times tk closed expressions of the wavefunction �(x, tk)

can be written. I will here consider only the three cases t = T/2N+1 with N = 0, 1, 2, before
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showing the existence of a phenomenon, namely the fragmentation of the wave packet and
the existence of regular patterns when λ is above a characteristic threshold λc, depending on
the specific time considered. The basic idea is to play with the time phase factors appearing
in the expansion (2.4) and to express �(x, tk) as a linear combination of the known initial
wavefunction taken at different abscissae xi . The generalization for times of the form (p/q)T

(p and q integers, p < q, p and q prime numbers) seems quite feasible, although it promises
to be somewhat cumbersome as long as a more elegant method is not available.

A first observation is the following: at half of a period (t = T/2), a simple glance at the
series (2.4) shows that �(x, T /2) = −�(λa −x, 0), which is just the symmetry relation (2.6)
for t = 0; now, since �(x, 0) ≡ ψ1(x), this equality gives a closed simple expression for the
wavefunction at this remarkable time. In the following, I show how such a method can be
used for the other times defined above.

4.1. The case t = T/4

The case λ = 3/2 (see figure 1) and the spectacular plateau occurring for t = T/4 draws
attention on this peculiar time. To start with and to introduce the method, let us analyse the
things in details, but for any λ. The clue is simply to realize that at this time the time-dependent
exponential in (2.4) is equal to 1 if n is even and to −i if n is odd. This allows us to write
�(x, T /4) in the form

�(x, T /4) = S2,0(x) − iS2,1(x), (4.1)

where the two (real) sums S2,0 and S2,1, respectively ,correspond to even and odd values for
the summation index n. Now that all the time factors on the RHS of (4.1) are fixed, it is
tempting to compare this expression with �(x, 0); noting that �(x, 0) = S2,0(x)+S2,1(x) and
�(λa − x, 0) = −S2,0(x) + S2,1(x), the two sums S2,k can be expressed in terms of �(x, 0),
thus readily obtaining the sum of the series (2.4) at this time (setting ξ = x/a for simplicity):

�(x, T /4) = 1√
a

[e−iπ/4θ(1 − ξ) sin πξ − e+iπ/4θ(1 − λ + ξ) sin π(λ − ξ)], (4.2)

an equality which yields the closed simple expression of the density for any λ:

aρ(x, T /4) = θ(1 − ξ) sin2 πξ + θ(1 − λ + ξ) sin2 π(λ − ξ), (4.3)

with still 0 � x � λa. Taking λ = 3/2, (4.3) immediately gives

aρ(x, T /4) =
⎧⎨
⎩

sin2 πξ, 0 � x � a/2
1, a/2 � x � a

cos2 πξ, a � x � 3a/2
(4.4)

which proves the existence of the plateau between a/2 and a in this definite case. Note that
this density is built in the following way: take the initial density, cut it into two pieces in the
middle, translate the right part to the right of the distance a, draw a horizontal line between the
two maxima and divide the whole by a factor 2. We will recover such rules below, showing
that the density at some other remarkable times can be built by playing with the pieces of the
initial density.

The expression (4.3) holds true at t = T/4 for any λ and has two clear-cut behaviours
according to λ < 2 or λ > 2. In the first case, the two θ functions are simultaneously non-zero
in the interval [(λ − 1)a, a], so that

aρ(x, T /4) =
⎧⎨
⎩

sin2 πξ, 0 � x � (λ − 1)a

sin2 πξ + sin2 π(λ − ξ), (λ − 1)a � x � a

sin2 π(λ − ξ), a � x � λa.

(4.5)
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Figure 4. Probability density (upper smooth curves) and density current (lower piecewise constant
curves) for three very close times near t = T/4. Note the extreme variability of the current in
space (except at exactly a quarter of a period). The oscillations near the jumps arise from numerical
truncations of the series and are obviously related to some kind of Gibbs phenomenon adapted to
a Gauss series.

This shows that for 1 < λ < 2 but λ �= 3/2 the function at T/4 has no plateau; in fact, for
all such values of λ, numerical plots show that the latter does exist, but for other times and
not located between the two simple values a/2 and a. Clearly, the relative simplicity of the
λ = 3/2 case is due to the fact that λ is a ‘simple’ rational number.

Note that the x-derivative of the density is equal to the real part Re(�∗∂x�); one easily
checks from the expression (4.2) that, for λ < 2 (and still t = T/4), Re(�∗∂x�) never
identically vanishes in a finite interval. Also note that if �(x, T /4) as given by (4.2) is a
continuous function of x (as it must be), its x-derivative is not, although it is devoid of Dirac
peaks due to the cancellation of �(x, t) at each jump of the derivative.

For λ > 2, the two intervals [0, a] and [(λ−1)a, λa] do not overlap; then, expression (4.3)
says that the wavefunction identically vanishes at t = T/4 for any x ∈ [a, (λ−1)a]. Examples
of this are illustrated in figures 2 and 3; it is seen that |�|2 vanishes between a and 3a/2 for
λ = 2.5, and between a and 9a/2 if λ = 5.5. Thus, for t = T/4 and λ > 2, the wave
packet splits itself in two distant parts: the particle is fully localized in two intervals separated
by a finite one; in each of them, the profile is the clone of the initial one, just divided by
2. This fragmentation into identical curves will also occur for t = T/8: then, four identical
well-separated clusters are found, provided that λ is greater than 4 (see section 4.3), each of
them being just one quarter of the initial density |ψ1(x)|2 properly translated.

As explained above, the current probability density j (x, t) is a constant piecewise
function, generally having jumps when the first derivative of the wavefunction is discontinuous;
otherwise stated, the jumps of j (x, t) also occur whenever the singular part D2

sing� contains a
Dirac comb. This turns out to happen in many points of the interval [0, λa], as seen in figure 4,
where all the functions have been numerically computed from the series (2.4). These plots
also show that there is not necessary a direct relation between the jumps of the current and the
edges of the plateaux and reveal the irregular variation of ∂x�, which is not always clearly
visible on the plot of the density, all the more since a cusp can occur only if Re(�∗∂x�) �= 0.
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Figure 5. Probability density ρ and current j as a function of time at x = a/2 (left), middle of the
well before the expansion, and x = 3a/4 (right), middle of the well after the expansion.

Now, starting from (1.3) with �(x, T /4) given by (4.2), a straightforward calculation yields
the piecewice constant expression

j (x, T /4) = πh̄

ma2
θ(1 − ξ)θ(ξ − λ + 1) sin πλ. (4.6)

Again, the situation is quite different for 1 < λ < 2 and for λ > 2. In the first case, the
current vanishes for 0 < x < (λ − 1)a and for a < x < λa; in the middle interval, it assumes
the constant negative value πh̄

ma2 sin πλ. Due to the conservation equation, the two points
x = (λ − 1)a and x = a are the only points where, at t = T/4, the time partial derivative
∂tρ is non-zero. As contrasted, for λ > 2, the current vanishes everywhere: not only at this
time the wave packet is split off in two fully disconnected parts, but the current between both
regions is identically zero since there the wavefunction strictly vanishes.

I mentioned above that, due to the central role of the Gauss series given in (2.4), it is
expected that all quantities have a rather rapid and irregular variation in time. Such a fact
is illustrated in figures 5 and 6, where the probability density and current are plotted for a
fixed x as functions of time (remember that for t and T − t the densities are the same and
the currents have reversed signs). At first glance, j (x, t) even looks like a singular function;
remember that j is given by a double Gauss series. For λ = 3/2, one has the symmetry
j
(

a
2 , t

) = j
(
a, T

2 − t
)
.

4.2. The case t = T/8

I shall here follow the same arguments as before, the situation being a bit more complex. I
first introduce four sums S4,k (k = 0, 1, 2, 3) corresponding to the values n = 4p − k of the
dummy summation variable in the series (2.4). Now, inspection of the time phase factors
shows that one has

�(x, T /2N+1) =
2N −1∑
k=0

e−ik2π/2N

S2N ,k(x), (4.7)

which has now the form of a Gauss sum (not a series). For N = 2, this gives

�(x, T /8) = S4,0(x) − S4,2(x) + e−iπ/4[S4,1(x) + S4,3(x)]. (4.8)
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Figure 6. Same as figure 5 for λ = 5/2. x = a/2 (left), middle of the well before the expansion,
and x = 5a/4 (right), middle of the well after the expansion.

I now follow the same idea as before, trying to choose definite abscissae xi such that the
space factor in (2.4) compensates in some way the dephasing due to the time factor. By trial
and error, it is seen that the proper abscissae xi which allow us to express the various sums
in terms of the initial wavefunction �(xi, 0) are λa/2 ± x and 3λa/2 − x. First note that
the sum S4,1(x) + S4,3(x) is simply equal to the known quantity S2,1(x) already introduced in
subsection 4.1; as for the difference S4,0(x) − S4,2(x), I find the following:

0 � x � λa

2
: S4,0(x) − S4,2(x) = 1

2

[
�

(
λa

2
+ x, 0

)
− �

(
λa

2
− x, 0

)]
, (4.9)

λa

2
� x � λa : S4,0(x) − S4,2(x) = 1

2

[
�

(
−λa

2
+ x, 0

)
− �

(
3λa

2
− x, 0

)]
. (4.10)

Great care must be exercised when writing the relations between the sums S2N ,k and the values
�(xi, 0) due to the fact that the equality (2.5) only holds for 0 � x � λa: outside this
interval, the wavefunction vanishes, although this is not the case for the sums since they are
2λa-periodic functions.

The above results eventually allow us to write the following closed expression for
�(x, T /8) valid for any λ:
√

2a�(x, T /8) = θ

(
λ

2
− ξ

)
f<(ξ) + θ

(
ξ − λ

2

)
f>(ξ)

+ e−iπ/4[θ(1 − ξ) sin πξ − θ(1 − λ + ξ) sin π(ξ − λ)], (4.11)

where the two functions f< and f> are

f<(ξ) = θ

(
1 − λ

2
− ξ

)
sin π

(
ξ +

λ

2

)
+ θ

(
1 − λ

2
+ ξ

)
sin π

(
ξ − λ

2

)
, (4.12)

f>(ξ) = θ

(
1 +

λ

2
− ξ

)
sin π

(
ξ − λ

2

)
+ θ

(
1 − 3λ

2
+ ξ

)
sin π

(
ξ − 3λ

2

)
. (4.13)

Note that small times give more cusps than larger times; numerical runs confirm that the initial
two cusps propagate through the interval [0, λa] and multiply at the very beginning of the
motion, before reducing in number when the time gets closer to half of a period.
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Figure 7. Probability density ρ(x, T /8) calculated from the closed analytical expression (4.11),
for three values of λ. Note the coincidence of the three densities for 0 � x � a/4, and between a/4
and a/2 when λ = 1.5 and 2.5. The fact that the density is constructed with pieces of |�(x, 0)|2
is clearly visible for the case λ = 3.

In order to illustrate these results valid for any λ, let me take again λ = 3/2; then, the
above formula gives for 2

√
a�(x, T /8)

0 � x � a

4
: −(1 + i) sin πξ, (4.14)

a

4
� x � a

2
: −i sin πξ − cos πξ, (4.15)

a

2
� x � a : −i sin πξ − (2 − i) cos πξ, (4.16)

a � x � 5a

4
: −sin πξ − (2 − i) cos πξ, (4.17)

5a

4
� x � 3a

2
: −(3 − i) cos πξ. (4.18)

This respectively gives the expressions for the dimensionless density aρ(x, T /8) in the
corresponding five intervals: 1

2 sin2 πξ, 1
4 , 1

4 + cos2 πξ − 1
4 sin 2πξ, 1

4 + cos2 πξ + 1
2 sin 2πξ

and 5
2 cos2 πξ ; note the plateau for a/4 � x � a/2, and the cusp at x = a, all features

are apparent in figure 7 where the density aρ(x, T /8) using the preceding formula is plotted,
and the analytical expression (4.11) for the other λ values. I checked that they give the same
density as that obtained by a numerical calculation using directly the expansion (2.4).

Coming back to the general λ case, the expressions (4.11)–(4.13) show that �(x, T /8)

a priori shows up cusps at the following abscissæ, which I precisely define for further reference:

x1 = a, x2 = |λ/2 − 1|a, x3 = λa/2,

x4 = θ(2 − λ)(3λ/2 − 1)a + θ(λ − 2)(1 + λ/2)a, x5 = (λ − 1)a. (4.19)

Quite remarkably, they are equally spaced, being located at pa/4 (p = 1, 2, 3, 4, 5) for
λ = 3/2; for λ > 2, where (λ − 1)a and λa/2 merge, the cusp at (3λ/2 − 1)a gets out of the
interval [0, λa], but the cusp at (1 + λ/2)a comes in so that there is still five cusps, which all
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Figure 8. Probability density (upper smooth curves) and density current (lower piecewise constant
curves) for three very close times near t = T/8.

remain in the latter interval for any λ (see figure 9). I will come back to this in the following
subsection.

The current can also be easily computed; I find

j (x, T /8) = πh̄

2
√

2ma2

[
c1±(ξ) sin

πλ

2
+ c3±(ξ) sin

3πλ

2

]
, (4.20)

where the functions cr± depend on the considered interval; for x < λa/2

c1−(ξ) = θ(1 − ξ)

[
−θ

(
1 − λ

2
− ξ

)
+ θ

(
1 − λ

2
+ ξ

)]
+ θ

(
1 − λ

2
+ ξ

)
θ(1 − λ + ξ)

(4.21)

and

c3−(ξ) = θ(1 − λ + ξ)θ

(
1 − λ

2
− ξ

)
. (4.22)

For x > λa/2, one has

c1+(ξ) = θ

(
1 +

λ

2
− ξ

)
[θ(1 − ξ) + θ(1 − λ + ξ)] − θ

(
1 − 3λ

2
+ ξ

)
θ(1 − λ + ξ) (4.23)

and

c3+(ξ) = θ(1 − ξ)θ

(
1 − 3λ

2
+ ξ

)
. (4.24)

All this shows that j (x, T /8) is a piecewise constant function, as it must be. The density and
the current are plotted in figure 8 from the (truncated) series (2.4) for three close times near
T/8; note again the rapid variation of the current. For λ > 4, the current vanishes everywhere.

4.3. Fragmentation

One sees in figures 2 and 3, which both correspond to λ > 2, that for t = T/4 the wave packet
is split into two symmetric parts at the edges of the allowed interval for x. This is true for
any λ > 2, as a consequence of (4.3): then the two intervals [0, a] and [(λ − 1)a, λa] do not
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Figure 9. Abscissæ of the cusps as a function of λ. The black segments show the domains where
the density is non-zero; and the hatched ones those where the density vanishes. Note that when
λ is above the threshold λc = 4, the domains of non-vanishing density move away one from the
other, but keep the same size and shape.

overlap, so that the density is non-zero only for 0 < x < a and (λ − 1)a < x < a; the two
corresponding peaks are identical in shape, each equal to the initial density simply divided by 2.
It thus turns out that for times T/4 (and 3T/4) the particle is fully localized into narrow domains
and cannot be found between them. It can be said that, provided the expanded well has a size
large enough, namely greater than 2a, there is the possibility for two identical bumps of width
a localized at the edges of the box, with no density at all in between.

The same phenomenon occurs for t = T/8 (and 7T/8): for λ > 4, the density shows up
four identical peaks, each of width a. Two of them are at the edges of the interval [0, λa], and
the two others are on each side of the middle of the box. Interestingly enough, the onset of the
four peaks occurs at λ = 4, a threshold at which the cusps are equally spaced (two couples of
them are degenerate because here λ−1 = 1 +λ/2 and λ/2−1 = 1). Once this has happened,
the two middle peaks (‘twin peaks’) remain at the fixed distance a one from the other when
λ increases, being localized between λa/2 ± a (central cusps), while the two edge peaks also
remain unchanged and are still located between 0 and a, and (λ − 1)a and λa as λ varies (see
figure 10). It thus turns out that for λ above the critical value λc = 4, the cusps delineate the
regions of vanishing and non-vanishing density: λa/2 and (λ/2 ± 1)a for the central clusters,
a and (λ − 1)a for those localized near the boundaries of the box. Again, one can say that
when the size is large enough (now greater than 4a), four identical peaks of width a can take
place as indicated and are independent of the expansion parameter λ.

To sum up this discussion, it can be stated that as far as λ is greater than 4, the density
ρ(x, T /8) is simply obtained by translating several times the initial density |ψ1(x)|2 ≡ ρ(x, 0)

according to the formula

ρ(x, T /8) = 1

4

4∑
α=1

ρ(x − lα, 0) (λ > 4), (4.25)
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Figure 10. Probability density ρ at t = T/8, for λ = 8 above the critical value λc = 4. The
fragmentation has occurred; the peaks now remain unchanged in size and shape when λ varies and
are located at the edges of the box, and on either side of the middle.

where the locations of the maxima lα are a/2, (λ ± 1)a/2 and (λ − 1/2)a. Increasing the
expansion factor does not alters the profile of each peak; the twin peaks stay locked around
the centre of the box, whereas the edge peaks are getting more and more far away. Remember
that above this threshold, the current identically vanishes everywhere.

Gathering the above results with those obtained in the T/4 case, one can anticipate
that for all times of the form T/2N+1 there exists a threshold λc = 2N above which a
fragmentation into 2N peaks occurs. The density profile consists of the elementary pattern

1
2N

[|�(x, 0)|2 +
∣∣�(

λa
2N−1 − x, 0

)∣∣2]
, and its 2N−1 − 1 clones translated by integer × λa/2N−1;

this is yet to be analytically proved in general, but numerical calculations allow us to be
convinced that this is true for any N (see figure 11 for an example). All this also confirms that
many cusps exist at first times of the T-periodic motion, but remember that the time unit is
precisely the period T = λ2T1, so that tN ≡ T/2N+1 = λ2T1/2N+1 � 2N−1T1: large N does
not mean small times.

The above conjectures are performed in the continuity of the analytical results given in
this paper. Many other statements can be claimed in view of numerical evidence, but they still
remain to be proved; let me give a few of them follows:

(i) For all times of the form tM = T/M , with M being an integer, there exists a threshold
λc(M) above which complete fragmentation occurs.

If M is even, λc(M) = M/2 and one gets a pattern of M/2 peaks located as above.
If M is odd, fragmentation starts up at λc = M , with M peaks; all peaks appear in twins
except one, located near the origin.

(ii) Fragmentation also takes place at times pT/M , with p being an integer. The number
of peaks depends on whether p and M have common divisors or not. For instance, with
M = 12, λ � λc = 6, one finds six peaks if p = 1, 5, three peaks if p = 2, 4, two peaks
if p = 3 and a single peak at x = λa if p = 6 (half-period).

The method presented in this paper should be still efficient for proving these (and other)
statements, although a more elegant procedure is highly wishable in order to make the analysis
less cumbersome and more systematic. Work in this direction is in progress.
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Figure 11. Probability density ρ at t = T/2N+1 for N = 4 and λ = 20; here, the critical value is
λc = 24 = 16.

Some of the above results can be summed up by saying that at definite times the density
is made up with pieces of the initial density, some translated, some being reversed up to an
additive constant. This construction game is reminiscent of the fractional revivals (exact or
approximate) which can occur in a lot of quantum systems. Indeed, the fragmentation just
found is one example of exact fractional revival, as precisely defined by Aronstein and Stroud
in [8]: at some particular times, the density is a superposition of (renormalized) translated
copies of the initial density (see equation (4.25) for an example). On the other hand, when the
expansion parameter is not large enough (see, e.g., figure 7), the reconstruction of the density
proceeds along much more complicated rules: the initial density has to be cut into definite
pieces, which are moved away, some of them being turned upside down. Clearly, this leads to
a graph which bears a faint resemblance only with the initial density and cannot be said to be
a revival of the latter.

5. Other results

After having focused on these rather outstanding features of the wave packet dynamics, let
me take the opportunity to add a few things for completeness, some of them being, as far as I
know, unquoted in the literature.

As a first by-product, one can compute the probability Pn(t) to find the energy Eλ,n when
achieving a measurement of the energy at a time t > 0; according to one of the postulates
of quantum mechanics, one has Pn(t) = |〈ψλ,n|�(t)〉|2 = 4λ3

π2
sin2(nπ/λ)

(λ2−n2)2 ; if λ is equal to an
integer n0, the probability Pn0 is equal to 1/n0. When λ � 1, the distribution of Pn is an
ever decreasing function of n; in contrast, if λ � 1, Pn has a maximum for n � λ, but
the probability distribution is quite flat (see figure 12). This maximum has a clear physical
meaning: there is some kind of resonance in the vicinity of the states having an energy Eλ,n

close to E1, the initial (and constant) value for the average energy. It can be checked that the
expectation value

∑
n∈N

∗ PnEλ,n is indeed equal to E1 at any time (see appendix A).
Note that the variance of the energy is infinite, since the average 〈H 2〉 is given by a

diverging series (Pn ∝ n−4, E2
λ,n ∝ n4). This is due to the fact that the prepared state
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Figure 12. Probability distribution Pn for three values of λ.
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Figure 13. Left: variations in time (0 � t � T/2) of the expectation value of the coordinate and
its variance. Right: same for the momentum.

effectively implies a large number of eigenstates ψλ,n because the coefficients cn have a
slowly-decreasing algebraic n-dependence, so that high energies are relevant for any λ. This
yields divergent energy fluctuations, exactly as in the case of a Pareto law with a small
exponent.

The expectation values of the position, 〈x〉(t), and of the momentum, 〈p〉(t), also display
interesting behaviour with time. An example is given in figure 13; it is seen that the particle is
periodically at rest on the average, since 〈x〉(t) is constant and equal to λa/2 whereas 〈p〉(t)
vanishes. This means that repeated measurements at those specific times would give exactly
the same results as if the particle was in any stationary state of the dilated well. Measuring
(independently) the energy would actually reveal the true nature of the state, giving for each
measure one among all the possible energies Eλ,n. It is also numerically observed that 〈x〉(t)
is bounded by a/2 and (λ − 1/2)a: the particle, on average, never gets closer than a/2 to the
reflecting walls at x = 0 and x = λa. The product �x�p is plotted as a function of time
in figure 14.

Note that the inverse process—sudden compression of the well, λ < 1—is impossible:
one cannot instantaneously generate a function vanishing for λa < x < a from a function
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Figure 14. Variations in time (0 � t � T/2) of the product �x�p.

which is finite in that interval. An infinite well can only be compressed with a finite rate; this
case was analysed in [22, 25].

As a final remark, let me mention that the limit λ → +∞ can be achieved from the above
formula and indeed reproduces irreversible propagation in half-infinite space starting from the
initial state ψ1(x); the point is to observe that �(x, t) in (2.4) is a summation on the variable
ν = n/λ, strictly equivalent to a Darboux sum, which quite naturally generates the Riemann
integral over ν in this limit (the differential element dν arises spontaneously from the factor
1/λ in front of the summation). From (2.4), the limit λ → +∞ yields

�(x, t) = i
√

2

a3/2

∫ +∞

−∞

sin ka

k2 − (π/a)2
eikx e−ih̄k2t/(2m)dk. (5.1)

Note that the two zeros of the denominator are just apparent singularities. Explicit direct
calculation allows us to check that such an expression coincides with that obtained directly
with the propagator of a free particle in R+:

U(x, t; x ′, 0) = 2

π

∫ +∞

0
sin kx sin kx ′ e−i h̄k2

2m
t dk (x, x ′ > 0) (5.2)

acting on the initial state ψ1(x) to build the state at time t according to the standard way,
�(x, t) = ∫

R+
U(x, t; x ′, 0)�(x ′, 0)dx ′. It is shown in appendix B that the expression (5.1)

should not lead to misconceptions about the p-representation of this wave packet.

6. Concluding remarks

As stated from the beginning, this paper just aimed to present a brief review of the rather
strange results given above. Although the general existence of the plateaux is numerically
established, I was able up to this point to give only some elements of theoretical explanation
and a genuine proof in the two particular cases t = T/4, T /8. Clearly, further investigation is
required in order to provide a general demonstration and also to define a systematic method for
finding the precise points (xk, tk) in spacetime where such intriguing behaviour takes place.

The fragmentation phenomenon also requires more attention although, as underlined, it is
related to the well-known fractional revivals problem; at this point, it can be conjectured that
for t = T/2N+1 there exists a critical value λc = 2N above which spontaneous fragmentation
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occurs into 2N peaks which are the translated replica of the initial density, divided by 2N . I
gave an analytical proof only for N = 1, 2, but numerical evidence allows us to be convinced
that this is a general result. For λ = λc, the density is an ordered finite lattice of adjacent
bumps. It cannot be excluded that more complex patterns could be realized, going beyond the
simple organization observed for t = T/2N+1, although numerical calculations for times of
the form pT/M (p and M integers) have, until now, unveiled spatial organization having the
simple features described above. Last but not least, a transparent physical interpretation would
be welcome, allowing us to get physical insight explaining such amazing and counterintuitive
behaviours. Work in these directions is in progress and, hopefully, will be published in the
near future.

Finally, the relevance of the above results with regards to a given experiment is strongly
dependent on the assumption of an instantaneous expansion of the well. Since the basic time
scale is the period T1 = 4ma2

πh̄
defined in (1.2), it is hoped that the theoretical results should

be observable provided the duration of the expansion is much smaller than T1. For hydrogen
(the lightest atom) initially confined in a well of nanoscale size (a ∼ 50 Å), one has T1 � 6 ×
10−10 s; with this, it can be hoped that a duration in the picosecond range at most should be
adequate for the above results to be observed.
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Appendix A

I here show how to check that the state �(x, t) given by equation (2.4) is actually normalized
to unity and that the expectation value of the energy is indeed equal to E1 for any time, as it
must be on physical grounds since no work is done on the particle when the well is suddenly
expanded.

Let us consider the function G(λ, φ) defined as follows (λ not an integer):

G(λ, φ) =
+∞∑

n=−∞

e2inφ

λ2 − n2
; (A.1)

this series is uniformly convergent for any real φ, so that G(φ) is a continuous function. On
the other hand, derivatives of G obviously contain generalized functions (the unit-step function
and its derivatives). One readily sees that the definition (A.1) allows us to write

|〈�(t)|�(t)〉|2 = − λ2

2π2

(
∂

∂λ
[G(λ, 0) − G(λ, φ)]

)
φ=π/λ

. (A.2)

Let us now find G(λ, φ), which is an even π -periodic function of the variable φ. By
differentiating twice the definition (A.1), one obtains a linear combination of the function
G itself and a Dirac comb. This means that the non-singular part of G precisely satisfies
the differential equation ∂φφG + 4λ2G = 0 for any φ ∈]0, π/2[; the general solution is
A cos 2λφ +B sin 2λφ. The two constants A and B can be found by using the known equalities
(Mittag–Leffler expansions):

G(λ, 0) ≡
+∞∑

n=−∞

1

λ2 − n2
= π

λ
cot πλ, (A.3)
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G(λ, π/2) ≡
+∞∑

n=−∞

(−1)n

λ2 − n2
= π

λ sin πλ
, (A.4)

which yield A = π
λ

cot λπ and B = π
λ

, so that eventually

G(λ, φ) = π cos λ(2|φ| − π)

λ sin πλ
(−π/2 � φ � π/2). (A.5)

As anticipated above, G(λ, φ) is a continuous function of φ, but its first derivative has a
jump at φ = 0(π), explaining the presence of the Dirac comb in the complete second-order
differential equation for G(λ, φ). Using now the rule expressed in (A.2), one readily gets
|〈�(t)|�(t)〉|2 = 1.

As for the average of the energy, one has

〈H 〉 = −λE1

π2
[G(λ, 0) − G(λ, π/λ)] − λ2E1

2π2

(
∂

∂λ
[G(λ, 0) − G(λ, φ)]

)
φ=π/λ

; (A.6)

the quantity in the brackets of the first line vanishes since it is proportional to �(x = a, 0);
due to (A.2), one is eventually left with

〈H 〉 = E1|〈�(t)|�(t)〉|2 = E1, (A.7)

confirming that the expectation value of energy 〈H 〉 is equal to E1 at all times negative or
positive, as it must be.

Appendix B

I here intend to draw attention on a misconception which could arise in view of the
expression (5.1). In order to make the discussion easier, I rewrite the latter as follows:

�(x, t) = 1√
2πh̄

∫ +∞

−∞
eipx/h̄�̃(p) e−ip2t/(2mh̄) dp, (B.1)

where the function �̃(p) is

�̃(p) = 2p
3/2
0

iπ

sin(πp/p0)

p2
0 − p2

, p0 = πh̄

a
. (B.2)

At first sight, it looks obvious to state that �̃(p) is the p-representation of the initial state,
while the time-dependent exponential in the integral in (B.1) is just the ordinary phase factor
for the free particle starting in the �̃(p) state at initial time. As apparently trivial as it stands,
this statement is simply wrong. In order to show this, let us draw a few consequences of it.

First, it is easy to calculate the integral
∫ +∞
−∞ |�̃(p)|2 dp; one finds that it is equal to 2,

instead of 1. Second, the true p-representation of the initial state can be easily and
unambiguously calculated according to �(p, t = 0) = (πh̄a)−1/2

∫ a

0 e−ipx/h̄ sin(πx/a)dx,
and turns out to be

�(p, 0) = 1

π

p
3/2
0

p2
0 − p2

(1 + e−iπp/p0); (B.3)

aside the fact that it comes out properly normalized to unity since �(x, 0) is, the function
�(p, 0) is frankly different from the function �̃(p) given in (B.2). Another drawback is that,
due to standard rules of quantum mechanics for p-representation, the expectation value of the
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coordinate is

〈x〉(t) = ih̄
∫ +∞

−∞
dp�̃∗(p)

[
d

dp
�̃(p) − ipt

mh̄
�̃(p)

]
. (B.4)

Since �̃(p) is an odd function of p, the integral vanishes, giving 〈x〉(t) = 0, which is clearly
incorrect: the wave packet moves (and spreads out) in the free half-infinite space as time goes
on. On the other hand, a non-vanishing integral would give a purely imaginary expectation
value since �̃(p) is a real-valued function, up to a constant phase.

The error comes from the fact that everything stands in R+, instead of R. In other words,
when a function f (x) arises as a Fourier integral of the form

f (x) = 1√
2π

∫ +∞

−∞
eikxF̃ (k) dk, (B.5)

the equality holds true only for x > 0 and one must not conclude at a glance (although
this could happen to be correct) that the function F̃ (k) is the Fourier transform of f (x):
since all this holds true only if x > 0, and assuming that the Jordan’s lemma is applicable,
one can add to F̃ (k) any function φ(k) which is analytic in the complex upper half-plane
without changing the integral on the RHS of (B.5); the difference between �̃(p) and �(p, 0)

is actually such a function (remember that ±p0 are apparent singularities). In other words,
although the Fourier transformation f (x) → F(k) is unambiguous, any intervening Fourier
integral must be cautiously interpreted before to claim this is just the Fourier inversion
formula; unconsidered intuitive identification can give incorrect results. Recall that for
such functions defined in R+, the Laplace transformation is a much more secure method to
proceed.
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